
Introduction to Databases
and SQL
Office of Internal Audit

Ivan Viamontes | July 2020

Introduction
• Databases represent a collection of data.

• Databases are comprised of a number of tables. Within each table, there
are rows (also known as a record or tuple) and columns (also known as an
attribute).

• Concept is similar to an Excel spreadsheet. Each sheet is a table. A row is
a row within the sheet and the columns are fields.

• Structured Query Language (SQL) is used to interact with a
database. The language was originally developed by IBM in the
1970s.

• The language is intended to mimic the human language and
standardize the way a user will interact with a database.

Why Relevant for Business Audits?

Use of Databases within Audits
• All applications rely on databases to store data.
• If there is an error in the code, an incorrect report will be

created which can have various impacts to the University.
• Errors can be hard to detect since the business will need to

identify all possible scenarios to test the system if they do not
understand the code.

• As processes continue to evolve, there is an increased reliance
on systems and data. As a result, it is important for a business
auditor to understand certain technical components.

Database Overview

Database Example

Types of Databases
• Relational Databases (RDBMS)

• This model organizes data into one or more tables (or "relations") of
columns and rows, with a unique key identifying each row.

• Each table/relation represents one "entity type" (such as student or class
schedule).

• Most common type you will see at the University.

• Non-Relational Databases (such as NoSQL databases)
• Also commonly referred to as Big Data
• Used in cases where a large amount of data needs to be retrieved and

maintained (such as Facebook, Twitter, or Amazon).
• Despite it’s name, SQL can be used on these databases.

Database Vendors by Type

Source: https://www.infoq.com/news/2011/04/newsql/

Database Schema
• Databases are organized based on the application being

supported.

• A Database Administrator (DBA) will often employ a
technique known as database modeling to create the
database schema (the actual implementation of the database).

• The database model will describe the tables (e.g., employee,
course, buildings, etc…) and the relationships to other tables.

Database Schema (Continued)

• Relationship Types (also
known as cardinality):

• One-to-many relationship – a
student can take one or many
courses.

• Many-to-many relationship –
Many students can take many
courses.

• Database normalization will
eliminate the many-to-many
relationships as it is inefficient to
store this data due to data
duplication.

Database Key Terms
• Schema – Represents a catalog of tables. A single database can have one or more schemas.
• Primary Key – The unique identifier within a given table. Can be one or more fields (known as a

composite key).
• Foreign Key – A key used outside of its origin. You will see this as part of the normalization process.
• Index – Used to optimize how the table will be queried.
• Constraints – Rules established within the database to ensure data integrity (e.g., column cannot be

NULL.
• Synonyms – Alternative name assigned to a database object.
• Views – Predefined code to create a virtual table (examples are most of the objects that we retrieve

from the Data Warehouse).
• Stored Procedures – Predefined code that will perform database activity. An example of this could be

a monthly purge of old documents or an overnight batch process.
• Transaction Log – All database activity is initially stored in this log to ensure that the activity is

properly performed. In the event of a failed transaction, the transaction can be rolled back through this
log.

SQL Overview

SQL Overview
• SQL is used to insert, retrieve, modify, and delete data within a

database.

• SQL is divided into the following categories:
• Data Definition Language (DDL) – Defines the data objects (e.g.,

tables, columns, keys, indexes, etc.) within the database based on the
defined data model.

• Data Manipulation Language (DML) – Used to insert, update, or
delete data within a database.

• Data Query Language (DQL) – Used to query or select data from a
database based on the defined data model. This training will only
focus on this category.

SQL Overview (Continued)
• SQL follows a standard created by the American National Standards

Institute (ANSI) / International Organization for Standardization (ISO).
• Interactions are periodically made to reflect the needs of database

users. Additionally, each database vendor adds proprietary language
to enhance the ANSI/ISO standards to improve the customer
experience (although this makes it difficult to change database
vendors if proprietary language is used).

• First iteration from ANSI/ISO was known as SQL-89 (SQL1). The
latest released version is ISO/IEC 9075:2011 (the seventh revision of
the language). USF tends to follow SQL-89.

SQL Syntax – Single Table
• All SQL queries begin with the word SELECT. This tells the database that a read-only statement

will be executed.
• Once SELECT is specified, the specific COLUMNS are specified as to which data points are

being pulled.
• Once all the COLUMNS are specified, the FROM clause is specified. This tells the database

what table to pull the data from. The schema and table name is specified after the FROM is
specified.

• Once the FROM table has been specified, the WHERE clause is specified which describes the
specific filters being applied to the data.

• If data aggregation is being performed (similar to the summarization option within ACL), a
GROUP BY clause is used to tell the database how to group the objects.

• If data aggregation is being used and filters need to be used for aggregated data, the HAVING
clause is specified.

• If you would like the result set to be organized in a certain way, the ORDER BY clause is used.
Either the column name is used or the column order in which it is represented.

SQL Syntax – Single Table (Continued)
• Within the SELECT statement, columns can be aliased within the

query. For example, if the technical object is Student_ID, you can use
an alias to say Student ID instead.

• SELECT Student_ID AS ‘Student ID’
• The WHERE clauses commonly use the following operators:

• = - Exact match based on what is listed after (WHERE student_id = 1)
• IN - Used for a series (WHERE student_id IN (1,2))
• LIKE – Used to do a keyword match (WHERE first_name LIKE ‘B%’)
• BETWEEN – Used to return a range of values (WHERE date BETWEEN

‘01/01/2020 AND ‘01/31/2020’).
• AND – Used to specify more than a single statement that must be met.
• OR – Used to specify an alternate condition that must be met.
• Parenthesis are used to group AND/OR statements to only focus on

specific combinations.

SQL Syntax – Single Table (Example 1)
• SELECT first_name, last_name, student_id, address
• FROM dbo.student_tbl
• WHERE first_name LIKE ‘a%’
• ORDER BY 1;

SQL Syntax – Single Table (Example 2)
• SELECT student_id, count(student_id) AS ‘Count’
• FROM dbo.student_tbl
• WHERE first_name LIKE ‘a%’
• GROUP BY student_id
• HAVING count(student_id) > 1
• ORDER BY student_id;

SQL Syntax – Single Table (Example 3)
• SELECT first_name, last_name, student_id, address
• FROM dbo.student_tbl
• WHERE (first_name LIKE ‘A%’ AND last_name LIKE ‘A%’)
• OR student_id = 1

SQL Syntax – Order of Operations
• The database will read the query in the following order:

• FROM
• JOIN(s)
• WHERE
• GROUP BY
• HAVING
• SELECT
• DISTINCT
• ORDER BY
• LIMIT

SQL Syntax – Joins
• Since tables are normalized, it is common for database joins to be required.

These are used to combine two or more tables based on the keys within each
table (e.g., linking a primary key to it’s foreign key within another table).

• There are three types of joins:
• INNER JOIN – Will only return objects that are matched.
• OUTER JOIN – Depending on the primary table selected, will return matched objects from

secondary table and all objects in the primary table.
• LEFT OUTER JOIN – Uses the first table (one specified in the FROM) as the primary table.
• RIGHT OUTER JOIN – Uses the second table specified in the JOIN statement.
• FULL OUTER JOIN – Returns all results from both tables regardless if there are matched on either side. Where

there are matches, the linked values will be included.

• CROSS JOIN (also known as a cartesian join) – Will match all values in table A to table B
together. This is very uncommon in practice.

SQL Syntax – Joins – Inner Join
Illustrated

SQL Syntax – Inner Join SQL

Under SQL-89
SELECT product_name,category_name,
list_price
FROM production.products p
,production.categories c
WHERE c.category_id = p.category_id
ORDER BY product_name DESC;

Under SQL-92
SELECT product_name,category_name,
list_price
FROM production.products p
INNER JOIN production.categories c

ON c.category_id = p.category_id
ORDER BY product_name DESC;

SQL Syntax – Joins – Left Outer Join
Illustrated

SQL Syntax – Joins – Right Outer Join
Illustrated

SQL Syntax – Joins – Full Outer Join
Illustrated

SQL Syntax – Left Outer Join SQL

Under SQL-89
SELECT product_name,category_name,
list_price
FROM production.products p
,production.categories c
WHERE c.category_id =
p.category_id(+)
ORDER BY product_name DESC;

Under SQL-92
SELECT product_name,category_name,
list_price
FROM production.products p
LEFT OUTER JOIN
production.categories c

ON c.category_id = p.category_id
ORDER BY product_name DESC;

SQL Syntax – Right Outer Join SQL

Under SQL-89
SELECT product_name,category_name,
list_price
FROM production.products p
,production.categories c
WHERE c.category_id(+) =
p.category_id
ORDER BY product_name DESC;

Under SQL-92
SELECT product_name,category_name,
list_price
FROM production.products p
RIGHT OUTER JOIN
production.categories c

ON c.category_id = p.category_id
ORDER BY product_name DESC;

SQL Syntax – Full Outer Join SQL

Under SQL-89
Not applicable

Under SQL-92
SELECT product_name,category_name,
list_price
FROM production.products p
FULL JOIN production.categories c

ON c.category_id = p.category_id
ORDER BY product_name DESC;

SQL Syntax – Joins – Cross Join
Illustrated

SQL Syntax – Cross Join SQL

Under SQL-89
SELECT product_name,category_name,
list_price
FROM production.products,
production.categories;

Under SQL-92
SELECT product_name,category_name,
list_price
FROM production.products
CROSS JOIN production.categories;

SQL Syntax – Unions

• Union – Combines a two or
more tables into a single result.
The columns specified must
have the same data types and
number of columns. Within SQL,
the commands are as follows:

• UNION ALL – Combined all
values among two tables or
more.

• UNION – Combines only distinct
values within the tables.

SQL Syntax – Intersect and Except

• Intersect – Returns results
where values are matched as
a single result set.

• Except – Returns the
difference between two result
sets.

SQL Syntax – Union, Intersect, and Except
SELECT [Student_ID]
FROM [dbo].[Students]

UNION (other options here are UNION ALL, INTERSECT, and EXCEPT)

SELECT [Student_ID]
FROM [dbo].[Students2]

SQL Syntax – Subquery
• Subquery – a nested query within a SQL statement.

SELECT order_id, order_date, customer_id
FROM sales.orders
WHERE customer_id IN (

SELECT customer_id
FROM sales.customers
WHERE city = 'New York'

)

SQL Syntax – Correlated Subquery
• Correlated Subquery – a type of subquery that performs a join operation

to return a single result set.
SELECT product_name, list_price, category_id
FROM production.products p1
WHERE list_price IN (

SELECT MAX (p2.list_price)
FROM production.products p2
WHERE p2.category_id = p1.category_id
GROUP BY

p2.category_id
)

SQL Syntax – Exists
• Exists – Used to return a TRUE or FALSE statement (also known as a binary

result). In practice, functions very similar to the IN condition of a WHERE
statement.

SELECT *
FROM sales.orders o
WHERE

EXISTS (SELECT customer_id
FROM sales.customers c
WHERE o.customer_id = c.customer_id
AND city = 'San Jose'

)

SQL Syntax – Common Table Expressions
• Common Table Expressions (CTEs) are an advanced form of

SQL used to perform recursive functionality. Recursive
functions typically increment a value until a certain goal is
obtained. An example would be creating a organizational
hierarchy that shows all the reporting relationships.

• These types of statements begin using the WITH operator.

• This topic is complicated and will not be included for this
discussion.

